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Abstract 

We show that many of the important features of 
polytypism are reproduced by a simple spin model, 
the axial next-nearest-neighbour Ising (ANNNI) 
model. The phase diagram of the ANNNI model 
contains sequences of long-wavelength-modulated 
phases. These correspond to the long stacking sequen- 
ces developed in polytypic series, and are stabilized 
by a subtle balance between energy and entropy which 
results from short-range competing interactions. We 
discuss the extent to which this mechanism can 
describe polytypism in the spinelloids, pyroxenes, 
silicon carbide and other mineral phases. 

I. Introduction 

In any close-packed structure each layer of atoms 
may occupy one of three positions, conventionally 
denoted A, B and C. No two successive layers, 
however, may occupy the same state. The two most 
commonly observed stacking sequences are those 
which result in hexagonal ( . . .  ABAB. . .  ) and cubic 
( . . .  ABCABC.. .  ) close-packed structures. In some 
compounds a large number of other stacking sequen- 
ces are also observed, many of which have remarkably 
long periodicities. These phases are known as poly- 
types. Polytypism is a special form of polymorphism, 
in which the polymorphs are derived simply by vary- 
ing the way in which structurally compatible units 
are arranged. This definition of polytypism, proposed 
by Thompson (1981), is slightly less demanding than 
most conventional definitions, which require that the 
compatible units or modules are structurally and 
chemically identical. In our analysis of polytypism, 
we shall not enforce these conditions. However, for 
structures to be considered truly polymorphic, it is 
necessary that different stacking arrangements should 
not affect the chemistry of the phase as a whole. 

Examples of stoichiometric, non-metallic materials 
which exhibit polytypism include the mica minerals, 
and the classic polytypes with MX or MX2 
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stoichiometry, characterized by SiC, ZnS, CdI2 and 
MoS2. Also included within the wider definition of 
polytypism, being composed of structurally compat- 
ible modules, are a range of minerals which include 
the pyroxenes, pyroxenoids, perovskites, spinelloids, 
zoisites, chlorites, sappharine and MnO2 oxides. 

The relative stability of two or more polymorphs 
is determined by the free energie.s of the phases con- 
sidered. Because polytypes are composed of virtually 
identical modular units, however, it is to be expected 
that their free energy will differ less than for poly- 
morphs of other kinds. As a consequence, the kinetics 
of transformations between different polytypes are 
often sluggish, and it is frequently difficult to establish 
that the system is in true thermodynamic equilibrium. 
Theories which have been advanced to explain poly- 
typic behaviour have, therefore, invoked non-equili- 
brium, kinetically dominated processes [such as dislo- 
cation-controlled crystal growth (Frank, 1951)], as 
well as equilibrium thermodynamic arguments 
(Jagodzinski, 1954; Smith, Yeomans & Heine, 1984; 
Price, 1983). 

Frank's (1951) theory of polytypism assumes that 
the crystal initially grows from a screw dislocation in 
the stacking planes, so that the period of the polytype 
is determined by the step height of the growth spiral. 
Using this mechanism, it is possible to generate almost 
any polytype from shorter-period structures, 
especially if the theory is modified to include growth 
resulting from interweaving spirals with different step 
heights (Trigunayat & Chadha, 1971 ). However, these 
mechanisms are not universally applicable, as many 
examples of long-period polytypes show no evidence 
of growth spirals. Moreover, the theory is unable to 
predict which polytypes will occur. 

In contrast, equilibrium theories assume that poly- 
types may exist as thermodynamically stable phases, 
the structure adopted being determined by external 
conditions. It is, however, difficult to test such a theory 
because the polytypic structures obtained are often 
found to depend strongly upon impurity concentra- 
tions, thus obscuring any correlation of structure with 
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more easily controlled variables such as temperature 
and pressure. In addition, since transformations 
between polytypes may be extremely slow, metastable 
phases or assemblages may persist even on the geo- 
logical time scales. Recently, however, a number of 
reversible transformations between shorter-period 
SiC polytypes have been observed (Jepps & Page, 
1983), providing strong evidence that at least these 
phases are equilibrium structures. 

An early equilibrium theory of polytypism was 
developed by Jagodzinski (1954), who argued that 
long-period polytypes are stabilized by their vibra- 
tional entropy. However, it has now been shown 
(Weltner, 1969) that the vibrational entropy differen- 
ces between polytypes are too small to contribute 
significantly towards their stabilization. Another 
approach to developing an equilibrium theory was 
adopted by Hazen & Finger (1981) and by Price 
(1983). These workers explained the stability of poly- 
types in terms of the energy of interaction between 
component polytypic units. In this paper, we also 
adopt the approach of using the energy of interaction 
between units to model polytypic behaviour, but, in 
contrast to previous work, we do so by considering 
the statistical mechanical ANNNI or axial next- 
nearest-neighbour Ising model. This model was 
originally studied in the context of magnetic phase 
transitions (Elliott, 1961), and was first applied to 
polytypic problems by Smith et al. (1984). The model 
not only predicts the large number of equilibrium 
structures characteristic of polytypic behaviour, but 
also reproduces their very-long-range periodicities. 

In § 2, we describe in greater detail the structures 
of the spinelloid polytypic family. The ANNNI model 
and its phase diagram are discussed in §§ 3 and 4. 
We then illustrate the relevance of the model to poly- 
typic behaviour (§ 5), and finally we present a brief 
discussion of the advantages and shortcomings of the 
ANNNI model as a description of polytypism (§ 6). 

2. The structure of spineiloid polytypes 

The spinelloid structural family was first recognized 
by Horiuchi, Horioka & Morimoto (1980), and was 
named after the common member of the family, the 
spinel structure. Spinelloids are based upon an 
approximately cubic close-packed O framework, and 
have an ideal stoichiometry of AB20 4. Two-thirds of 
the cations occupy octahedrally coordinated sites 
within the O framework, while the remaining one- 
third are tetrahedrally coordinated. The cations define 
a 'basic structural unit' (Horiuchi, Akaogi & 
Sawamoto, 1982) within the O framework, as shown 
in Fig. 1 (a). All spinelloid structures can be construc- 
ted from this unit. In the vast majority of spinelloids, 
the arrangement of the basic structural units is 
invariant in two orthogonal directions, and generates 
an infinite sheet, part of which is shown in Fig. l(b). 

It is the variation in the packing of these sheets in 
the third dimension which gives rise to the observed 
range of spinelloid structures, the details of which 
will be described below. 

The spinel structure may be viewed as having the 
component spinelloid sheets, shown in Fig. l(b), 
packed normal to [110]. Adjacent sheets are related 
by a glide operator, having a displacement ¼[112] on 
(l l0) ,  which when regularly repeated generates the 
structure shown in Fig. l(c) (Price, 1983; Hyde, 
White, O'Keeffe & Johnson, 1982). This operation 
produces a sequence of basic structural units along 
[110], in which adjacent units are inverted relative to 
one another. If the basic structural unit shown in Fig. 
l(a)  is represented by the arrow illustrated, then the 
stacking sequence along [110] can be described by 
the code . . .  $~$~.. .  (Horiuchi et al., 1982). In addi- 
tion to being interrelated by a glide operator, spinel- 
loid sheets may also be related by a mirror or twin 
operation. This operation gives rise to adjacent struc- 
tural units with the same orientation, and is found, 
for example, in the idealized/3-phase polymorph of 
(Mg,Fe)2SiO4, wadsleyite (Fig. l d). This structure 
can be represented by the stacking code . . .  $$$$ . . . ,  
where the component sheets are alternately related 
by mirror and glide operations. 

There are naturally an infinite number of possible 
stacking sequences which can be generated by com- 
bining mirror and glide operators. However, only six 
of the possible sequences have been reported as form- 
ing crystal structures. These six structures are the 
spinel and /3-phase described above, the mangano- 
stibite structure ( . . .  $ $ ~ ' ~ . . .  ) and three structures 
found only in the NiESiO4-NiA1204 system (Ma, 
1974; Akaogi, Akimoto, Horioka, Takahashi & 
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Fig. 1. Perspective views of (a) the 'basic structural unit' of spinel- 

loids, after Horiuchi et aL (1982), (b) the constituent sheet from 
which spinelloid structures can be constructed, (c) the spinel 
structure, (d) the B-phase structure. 
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Horiuchi, 1982) with stacking formulae . . .  1'1'$.. . ,  
• ..1'1'1'$... and ...1'1'~$1'~1'1'~ . . . .  It should be 
noted, however, that recent high-resolution trans- 
mission electron microscopy studies (Davies & 
Akaogi, 1983) have shown that considerable stacking 
disorder can occur in these nickel aluminosilicate 
spinelloids. Previous workers (Hazen & Finger, 1981; 
Price, 1983) have attempted to explain why these six 
spineUoid structures should be more favoured than 
other possible spinelloid polytypes by considering the 
possible strain interaction between component 
spinelloid sheets or modules. In this paper, we present 
an analysis of both the observed spinelloid structures, 
and the development of polytypism in general, in 
terms of the ANNNI  model, in which short-range 
competing interactions stabilize long-wavelength 
phases. 

3. The ANNNI m o d e l  

We have seen in § 2 that spinelloids may be built up 
from a basic structural unit which may be one of two 
states, conveniently labelled T and $. We now describe 
how to use this idea to map the spinelloid structures 
onto an effective magnetic system, which can be 
studied using standard techniques of statistical 
mechanics (Landau & Lifshitz, 1958). 

(i) Each structural unit is associated with a lattice 
site. The resulting lattice is cubic. 

(ii) The orientation of the unit on each site is then 
represented by an Ising spin variable, si = +I or -1 ,  
corresponding to 1' or ~ respectively. 

(iii) The interactions between the structural units 
can be represented by a Hamiltonian which defines 
the interaction between the spins. First consider layers 
perpendicular to the [010] direction in the fl-phase 
structure (Fig. 1 d). The ground state of each of these 
layers is metamagnetic, that is ferromagnetic along 
[001] and antiferromagnetic along [100]. This can be 
described by a term in the Hamiltonian 

[oo i ] [ 1 oo] 
Ho = -Jo  ~ s,sj + J'o E s,sj, ( l ) 

n n  n n  

where the interaction parameters Jo, J~> 0, and Y,, 
denotes a sum over nearest-neighbour sites in the 
direction specified. As the temperature is raised the 
layers may deviate from their metamagnetic ground 
state by the flipping of the spins, s~. The probability 
that a spin will flip is determined by e x p ( - 2 J o / k B T ) ,  
where kB is Boltzmann's constant and T is the tem- 
perature. In spinelloid polytypes we expect very few 
spins to deviate from the metamagnetic ground state 
of the layers, and we may therefore consider Jo >> kBT. 

(iv) We now turn our attention to the interaction 
between layers, along the stacking direction. Consider 
first a nearest-neighbour interaction 

[olo] 
HI = - J r  Y. sisj. (2) 

rlrl 

Note that, at T =  0, 2J~ is the difference in energy 
between a ferromagnetic (1'1') and an antiferromag- 
netic (1'$) alignment of two neighbouring spins. Both 
configurations occur frequently in the observed 
spinelloids, suggesting that J~ is small. Therefore, a 
second-neighbour interaction in the stacking direc- 
tion is likely to be relatively important, and should 
be included in the Hamiltonian: 

[Ol0] 
H 2 = - J 2  • s,sj. (3) 

f i n n  

The arguments just presented suggest that the stack- 
ing sequences observed in the spinelloids can be 
modelled by a Hamiltonian 

[oo13 [1oo] 
H = Ho + HI + H2 = -Jo  ~, sisj + J'o ~, s,sj 

r i l l  n t l  

[010] [010] 

- Jl ~ s,sj - J2 ~, s,sj. (4) 
n r l  f i nn  

This model, the so-called axial next-nearest-neigh- 
bour Ising or ANNNI  model (Elliott, 1961), has 
recently received a lot of attention from statistical 
mechanicians (for a review see Bak, 1982). Its phase 
diagram, as a function of Jr, J2 and T, is well estab- 
lished, and was obtained using sophisticated mean- 
field theory (Bak & v o n  Boehm, 1980) and low- 
temperature series techniques (Fisher & Selke, 1980, 
1981). The resulting phase diagram does indeed 
include many different, long-wavelength phases or, 
for our purposes, polytypes. Our next aim is to 
describe this phase diagram, and then to compare the 
stable phases to the stacking sequences observed in 
the spinelloids. 

4.  T h e  A N N N l - m o d e l  p h a s e  d i a g r a m  

It is first convenient to introduce a notation which 
will facilitate the description of the states appearing 
in the ANNNI-model  phase diagram (Fisher & Selke, 
1980, 1981). As the ordering within the layers is 
invariant, we need only consider ordering in the stack- 
ing direction. In this direction a typical phase will 
comprise a repeating sequence of up and down spins, 
for example, 

• . .  1 ' 1 ' ~ 1 ' 1 ' ~ 1 ' 1 ' ~ 1 ' 1 ' ~  . . . .  ( 5 )  

Consecutive spins of the same sign will be termed 
bands. The repeating sequence in (5) comprises three 
bands of two spins or 2-bands, followed by one 3- 
band. This will be denoted (2223) or (233). Other 
examples include the ( 122) sequence 
• .. T ~ 1'1'~1'T~ • • -, and the sequence. . .  1 ' ~  1 ' ~  • • • 
denoted by (13). More generally, ( n t n 2 . . .  nm) will 
refer to a state where the repeating sequence is made 
up of m bands of length nl, n 2 . . .  nm. This notation 
is analogous to the Zhdanov notation used in the 
description of polytypic materials. 
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Consider first the ground-state ( T = 0 )  phase 
diagram of the A N N N I  model, which is shown in 
Fig. 2. For 32> 0 (ferromagnetic second-neighbour 
bonds) the ground state is ferromagnetic 
( . . .  1'1'T1'1' • • • or (oo>) for Ji > 0 and antiferromagnetic 
( . . .  1'$1'$1'$ . . .  or (1)) for J, <0.  Note that in both 
these cases first- and second-neighbour bonds are 
satisfied (that is in their lowest-energy configuration). 
However, for J2 < 0 this is no longer the case, and 
there is competition between the ordering favoured 
by first- and second-neighbour bonds. For IJtl large, 
the first neighbours dominate and the (oo) and (1> 
states are stable as before. However, for IAI small, 
the ordering favoured by the second-neighbour 
bonds, namely . . .  1'1'$~1'1'--- or (2>, provides the 
ground state. On the boundary between (2) and (oo>, 
at J, = -232, the ground state is highly degenerate, as 
all phases which contain no 1-bands have the same 
energy. The boundary between <1) and (2) at J, = 2J2 
is a similar, multiphase line, on which all phases 
containing only 1- and 2-bands have the same energy. 
Note, however, that the boundary between (1) and 
(oo> is not a multiphase line, as here only the phases 
(1) and (oo) coexist. 

Next let us consider the changes in the ground- 
state phase diagram as the temperature is increased 
from zero. We expect the picture to remain similar 
to that at T = 0 ,  except in the vicinity of the 
multiphase lines, where it is necessary to ask which 
of the degenerate, zero-temperature phases persist to 
finite temperatures. This question is answered in Fig. 
3, which shows a schematic representation of the 
phase diagram of the ANNNI  model for a fixed 
O<kBT<<Jo (Fisher & Selke, 1980, 1981). In the 
vicinity of the multiphase lines, infinite sequences of 
phases (2"-13) and (12">, n = 1,2, 3 , . . . ,  are stable. 
The way in which these phases spring from the 
multiphase line as the temperature is increased is 
illustrated in Fig. 4. All the phase boundaries are first 
order. The width of successive phases is proportional 
to exp ( -8Jon/kBT) ,  and hence the phase sequences 
would very quickly become impossible to resolve 
experimentally. As the temperature is increased 
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Fig. 2. The ground state of the ANNNI model. The dashed lines 
are multiphase lines. 

further phases appear (Bak & v o n  Boehm, 1980; 
Duxbury & Selke, 1983), but at these temperatures 
the layers are significantly disordered. 

We have described how short-range competing 
interactions are sufficient to stabilize long-wavelength 
spin structures. For a given value of the interaction 
parameters and temperature, the stable phase corre- 
sponds to the phase of minimum free energy. Because 
of the competing interactions the energetic contribu- 
tion to the free energy is very similar for an infinite 
number of different phases. Hence in the ANNNI  
model it is entropic factors that are important in 
determining the stability of a given phase. 

5. A model for polytypic behaviour 

It is now possible to interpret the behaviour of poly- 
typic materials in terms of the ANNNI  model. We 
can identify each phase in the ANNNI  model with 
a polytypic structure, by equating the symbols intro- 
duced above to describe the sequence of spin bands 
to the sequence of structural units or operators in the 
polytype (cf. Zhdanov notation). For example, the 
spinel structure will be denoted by (1>, the/3-phase 
structure by (2>, the manganostibite structure by (3>, 
and so forth. The energy of interaction between basic 
structural units is then represented by the spin interac- 
tions, Jo, J~ and J2. For given J~, J2 and kBT/Jo, the 
stable polytype will correspond to the spin phase with 
minimum free energy, and can be determined from 

1 

<">YS \\\"<'> 

Fig. 3. Schematic phase diagram of the ANNNI model at a fixed 
temperature, kaT << Jo. 

<12> <122> <123> • ~ [  <223> <23> <3> 

<2> <co> 

-2 2 jr.- 
I J21 

Fig. 4. Schematic phase diagram of the ANNNI model as a function 
of temperature (kaT/Jo<< 1) and J,/lJ2[. 
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the ANNNI-model  phase diagrams shown in Figs. 3 
and 4. Transformations between polytypes occur 
because the effective interaction energies J, and -/2 
vary as a function of pressure, temperature and 
chemical environment. As the conditions to which 
the polytype is subjected vary, the point defined by 
the coordinates Jl, J2 and kBT/Jo may describe a 
trajectory which passes through many different 
phases. The exact form and extent of this path, and 
hence the sequence of stable phases, will critically 
depend on the exact relationship between J,, -/2 and 
the external conditions. By using this approach many 
complex aspects of polytypic behaviour can be 
explained. 

The phase relationships between spinelloid poly- 
types in the Ni2SiO4-NiA1204 system have been 
studied in detail by Akaogi et al. (1982). They found 
that compositions close to Ni3AI2SiO8 can adopt one 
of three spinelloid structures. At pressures, P, less 
than 5 GPa a spinelloid with the/3-phase, (2), struc- 
ture is encountered. However, with 5 < P < 7 GPa, a 
spinelloid with the (122) structure is stable, while with 
P > 7 GPa the (12> structure is adopted. These trans- 
formations are virtually independent of temperature, 
and are reported to be first order in nature. This 
sequence of transformations can be accounted for by 
considering that variations in J~ and J2, as a function 
of increasing pressure, define a trajectory on the phase 
diagram shown in Fig. 3, which starts in the (2) phase 
and moves to the (12) phase, passing through the 
(122) phase. The failure to observe any longer-period 
structures (e.g. (123)) in this series of transformations 
may be accounted for by the very small region of 
stability predicted for these long-period phases. 

As well as the pressure dependence exhibited by 
the Ni3A12SiO8 spinelloid polytypes, it is also found 
that the structures adopted by spinelloids in the 
Ni2SiOa-NiA1204 system as a whole are highly com- 
position dependent. At pressures greater than about 
4 GPa, the spinel structure, (1), is adopted by the two 
end members, while the manganostibite structure, (3>, 
is developed by 2Ni2SiOa:3NiA1204, and the (13> 
structure is formed by Ni2SiO4: 3NiAI204. This vari- 
ation in spinelloid stability reflects the dependence 
of Jt and J2 upon the bulk composition of the phase 
(Price, 1983), and results in spinelloids with differing 
compositions corresponding to different stable phases 
of the A N N N I  model (Fig. 3). It should be noted, 
however, that a (13) polytypic structure does not occur 
in the A N N N I  phase diagram. Previous attempts to 
rationalize the stability of spinelloid polytypes 
(Hazen & Finger, 1981; Price, 1983) have also failed 
satisfactorily to explain why the (13) structure should 
be adopted. If the (13> phase is indeed thermodynami- 
cally stable, we must conclude that the approxima- 
tions inherent in the A N N N I  model do not take full 
account of all the factors which determine polytype 
stability. The limitations of the A N N N I  model will 

be discussed in § 6. However, we first illustrate how 
it can be successfully applied to a variety of other 
polytypic materials. 

The pyroxene MgSiO3 occurs as one of three poly- 
morphic structures, known as the minerals clinoen- 
statite, orthoenstatite and protoenstatite. These three 
phases can be considered as polytypes (lijima & 
Buseck, 1975), with packing sequences (oo), (2) and 
(1) respectively. In this system, the role of temperature 
appears to be most important in determining the 
relative magnitudes of J~ and J2. At temperatures 
above 1253 K, protoenstatite is the stable phase, but 
on cooling it is thought to convert first to orthoen- 
statite, (2>, and then below 923 K to clinoenstatite 
(Deer, Howie & Zussman, 1978). The mechanism and 
kinetics of this inversion, however, make it difficult 
to define transformation temperatures exactly. The 
inferred sequence of polytypic phase transformations, 
(1>-(2)-(oo), is compatible with a simple trajectory in 
the J~, J2 space of Figs. 3 and 4 for -/2 < 0. No inter- 
mediate phases (e.g. (12) or (3)) have been found in 
this system although high-resolution transmission 
electron microscopy (see, for example, Iijima & 
Buseck, 1975) has revealed that considerable stacking 
disorder is developed in some partially inverted 
enstatites. 

Wollastonite (CaSiO3) is another well known 
mineral, which exhibits two major polytypic vari- 
ations, with stacking sequences describable by (~> 
and (2>. Recent observations by Henmi, Kawahara, 
Henmi, Kusachi & Takeuchi (1983) indicate that at 
high temperatures the (2) polytype may be stabilized 
relative to the (oo> structure. In a temperature range 
intermediate between those dominated by the (2> and 
the (oo) phases, they reported the occurrence of minor 
amounts of polytypes with (3), (4) and (5) structures. 
Within the A N N N I  picture, the (3> phase is stable, 
while the (4) and (5) phases can be expected to appear 
as metastable phases. This point is discussed further 
in §6. 

In addition to the mineral polytypic behaviour 
described above, the A N N N I  model can successfully 
explain the wurtzite, (1>, to zinc-blende, (~>, transfor- 
mations which occur in the classic ZnS and Agl 
polytypes, transformations between hexagonal perov- 
skite polytypes, and all the recently observed rever- 
sible transformations in the SiC system (Smith et al., 
1984). Jepps & Page (1983) have reported three sets 
of reversible SiC transformations (all determined 
under slightly different physical or chemical condi- 
tions) which correspond to (1)-(oo), (oo)-(3> and (3)- 
(2). The occurrence of these SiC polytypic inversions 
is particularly striking given the topological distribu- 
tion of these phases on the ANNNI  phase diagram 
(Fig. 3). It is also interesting to note that the large 
majority of stable polytypes observed in SiC are com- 
prised of 2- and 3-bands (Trigunayat & Chadha, 
1971), suggesting a ferromagnetic first-neighbour 
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interaction in SiC. For CdI2, however, 1- and 2-bands 
predominate, indicating that the effective J, is antifer- 
romagnetic. An exact correspondence between the 
phases of the ANNNI model and the classical poly- 
types is not, however, observed. Indeed it can hardly 
be expected, both because of problems of metastabil- 
ity and because the ANNNI model is unlikely to 
reproduce correctly all of the symmetries or elemen- 
tary excitations of close-packed and other polytypic 
compounds. 

6. Discussion 

In this paper we propose a model of polytypism, in 
which the basic polytypic structural units are mapped 
onto magnetic spin variables. The interactions 
between the units are then written in terms of a 
Hamiltonian with competing interactions. This pro- 
vides a simple equilibrium mechanism by which 
short-range couplings can lead to the existence of 
polytypes with very long stacking sequences. Many 
of the other important features of polytypism are also 
explained by this model; notably that only a specific 
set of polytypes are stable for any given compound, 
that reversible phase transitions are observed and that 
polytypes with short stacking sequences occur most 
frequently. 

Many phases, for example (4), C5), C233>, which are 
observed in polytypic compounds do not appear in 
the phase diagram of the ANNNI model shown in 
Figs. 3 and 4. The ANNNI model does lock in to 
many more phases at higher temperatures (Bak & yon 
Boehm, 1980), but at such temperatures the layers 
are significantly thermally disordered, a state unlikely 
to be found in real compounds. However, within the 
ANNNI picture we should expect many complicated 
phases to appear in nature as metastable states. To 
see this consider Fig. 5, where the free energies of 
the phases (2>, (23>, (3), (4>, C5> and Coo) are plotted 

-2.084 

-2.085- 

-2'086- 

-2.087 

~~~/ (2> <23) 

<3> 

<4> 

/ 
1-94 1.96 1.98 2.00 2.02 2.04 2.06 

J,/IJ, I 

Fig. 5. Free energy (in units of  Jo) of  the shorter-wavelength phases 
near the mult iphase point Ji/[J2[ = 2.0. The results were obtained 
for kBT/J  o = 2.0, JJJo = 0. l, using a mean-field approximation.  

as a function of J,/I.12l, near the (2>:(oo> boundary. 
These results were obtained using a mean-field 
approximation (Bak & v o n  Boehm, 1980) for Jo = 
J'o, k B T / J o  = 2.0 and J~/Jo = 0.1. Note that the free 
energies of the different phases differ only by the 
order of 1 part in 104, f o r  Jl/IJ2[ = 2"0. A similar result 
holds, near the (2} : (oo) boundary, for all phases which 
contain no 1-bands, and near the (1>:(2> boundary 
for all phases which comprise only 1- and 2-bands. 
Hence once such phases are formed, perhaps during 
rapid growth at high temperatures, decay to the stable 
phase in this vicinity will be extremely slow. 

We should note, however, that the development of 
the (13} phase of the spinelloids remains a mystery, 
as its free energy is not close to any of the ANNNI 
phases. However, we should hardly expect the 
ANNNI model to predict all equilibrium structures, 
since absolute accuracy cannot be expected from such 
an idealized model, which ignores longer-range forces 
and the effect of detailed structural features, such as 
cation disorder (Akaogi & Navrotsky, 1984), upon 
polytype stability. In particular, in the close-packed 
compounds a more realistic picture is expected if the 
three atomic positions, A, B and C, are mapped onto 
a three-state model, the Potts model with competing 
interactions. This model has more realistic spin flips, 
and preserves more of the symmetries of the original 
system. Its phase diagram is currently under investiga- 
tion. The Potts-model approach is also likely to be 
applicable in analysing polytypism in micas, where 
successive sheets can be related by more than two 
possible stacking vectors (Thompson, 1981). 

It should also be noted that although we have 
limited our application of the ANNNI model to poly- 
typic systems, preliminary studies indicate that it can 
be used satisfactorily to explain the structures 
exhibited by polysomatic materials (Thompson, 
1978). These materials correspond to families of struc- 
tures which can be obtained by stacking in varying 
proportions two or more chemically distinct units, 
and thus represent a more general form of the problem 
addressed in this paper. Examples of such polyso- 
matic phases include the biopyroboles (Thompson, 
1978), the CeFCO3-CaCO3 minerals (Zen, 1967), and 
the leucophoenicite-humite family of minerals 
(White & Hyde, 1983) which adopt (1>, (12"}, (2), 
(2"3} and (3) structures. 

In this paper we have not attempted to calculate 
the magnitude of the interaction parameters which 
appear in the magnetic Hamiltonian. It is clear that 
they correspond to the small differences in phonon, 
strain and electronic free energies of different stacking 
sequences. A first-principles calculation would be 
extremely difficult. It may, however, be possible to 
understand the way in which these parameters vary 
with temperature and pressure hence driving the com- 
pound through its different stable phases, by using 
lattice simulation techniques (Catlow, Thomas, 
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Parker  & Jefferson, 1982; Price & Parker,  1984). Such 
an investigation is in progress. 

We should like to encourage experimental ists  to 
test  the ideas presented in this paper  by obtaining 
more experimental  results on the phase diagrams of  
polytypic compounds  as a function of  tempera ture  
and pressure. Da ta  are at present scarce due to the 
difficulties imposed by the inevitable presence of  
defects which are known to affect strongly the stability 
of  polytypic phases.  

We should like to thank Desmond  McConnel l ,  
Volker Heine,  Jona than  Smith and Heinrich R6der  
for many  useful ideas and discussions. G D P  grate- 
fully acknowledges  the receipt 6f  a Royal Society 
Research Fellowship. 
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Abstract  

A method  for determining the crystal structure using 
the dynamical  extinction effect in the electron diffrac- 
tion appear ing  in high-resolution electron micro- 
graphs  is p roposed  for the mineral  cebaite 
Ba3Ce2(CO3)5F2 whose heavy-atom positions have 
not previously been determined but only estimated. 
The specimen is thicker than the max imum thickness 

for which the weak-phase-object  approximat ion  is 
applicable,  so that the extinction effect becomes pre- 
dominant  and the image contrast  of  light atoms is 
enhanced.  Using electron micrographs  of  huanghoi te  
BaCe(CO3)2F, whose atomic structure is known and 
related to that. of  cebaite, the opt imum thickness and 
i0aaging condition,  which can reveal t h e  image of  
light a toms as well as heavy atoms, are investigated. 
The op t imum thickness is found to be 45 to 50/~ 
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